CovMve(x, alpha = 1/2, nsamp = 500, seed = NULL, trace = FALSE, control)
alpha*n
observations are used for computing the determinant. Allowed values
are between 0.5 and 1 and the default is 0.5."best"
or "exact"
. Default is nsamp = 500
. For
nsamp="best"
exhaustive enumeration is done, as long as the
number of trials does not exceeseed = NULL
trace = FALSE
CovControlMve-class
containing estimation options - same as these provided in the fucntion
specification. If the control object is supplied, the parameCovMve-class
which is a subclass of the
virtual class CovRobust-class
.CovMve-class
containing the estimates.
The approximate estimate is
based on a subset of size alpha*n
with an enclosing ellipsoid of smallest volume.
The mean of the best found subset provides the raw estimate of the location,
and the rescaled covariance matrix is the raw estimate of scatter. The rescaling of
the raw covariance matrix is by median(dist)/qchisq(0.5, p)
and this scale factor
is returned in the slot raw.cnp2
. Currently no finite sample corrction factor is applied.
The Mahalanobis distances of all observations from the location estimate for the
raw covariance matrix are calculated, and those points within the 97.5 under Gaussian assumptions are declared to be good. The final (reweightd) estimates are the
mean and rescaled covariance of the good points. The reweighted covariance matrix is
rescaled by 1/pgamma(qchisq(alpha, p)/2, p/2 + 1)/alpha
(see Croux and Haesbroeck, 1999) and this scale factor is returned
in the slot cnp2
.
The search for the approximate solution is made over ellipsoids determined by the
covariance matrix of p+1
of the data points and applying
a simple but effective improvement of the subsampling procedure
as described in Maronna et al. (2006), p. 198.
Although there exists no formal proof of this improvement (as for MCD and LTS),
simulations show that it can be recommended as an approximation of the MVE.cov.mve
from package data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
CovMve(hbk.x)
## the following three statements are equivalent
c1 <- CovMve(hbk.x, alpha = 0.75)
c2 <- CovMve(hbk.x, control = CovControlMve(alpha = 0.75))
## direct specification overrides control one:
c3 <- CovMve(hbk.x, alpha = 0.75,
control = CovControlMve(alpha=0.95))
c1
Run the code above in your browser using DataLab