Learn R Programming

rrcov (version 0.4-08)

CovSest: S Estimates of Multivariate Location and Scatter

Description

Computes S-Estimates of multivariate location and scatter based on Tukey's biweight function using a fast algorithm similar to the one proposed by Salibian-Barrera and Yohai (2006) for the case of regression. Alternativley, the Ruppert's SURREAL algorithm, bisquare or Rocke type estimation can be used.

Usage

CovSest(x, bdp = 0.5, arp = 0.1, eps = 1e-5, maxiter = 120, 
        nsamp = 500, seed = NULL, trace = FALSE, tolSolve = 1e-13, 
        method = c("sfast", "surreal", "bisquare", "rocke"), control,
        t0, S0, initcontrol)

Arguments

x
a matrix or data frame.
bdp
required breakdown point. Allowed values are between (n - p)/(2 * n) and 1 and the default is 0.5
arp
a numeric value specifying the asympthotic rejection point (for the Rocke type S estimates), i.e. the fraction of points receiving zero weight (see Rocke (1996)). Default is 0.1
eps
a numeric value specifying the relative precision of the solution of the S-estimate (bisquare and Rocke type). Defaults to 1e-5.
maxiter
maximum number of iterations allowed in the computation of the S-estimate (bisquare and Rocke type). Defaults to 120.
nsamp
the number of random subsets considered. Default is nsamp = 500
seed
starting value for random generator. Default is seed = NULL.
trace
whether to print intermediate results. Default is trace = FALSE.
tolSolve
numeric tolerance to be used for inversion (solve) of the covariance matrix in mahalanobis.
method
Which algorithm to use: 'sfast'=FAST-S, 'surreal'=SURREAL, 'bisquare' or 'rocke'
control
a control object (S4) of class CovControlSest-class containing estimation options - same as these provided in the fucntion specification. If the control object is supplied, the para
t0
optional initial HBDP estimate for the center
S0
optional initial HBDP estimate for the covariance matrix
initcontrol
optional control object to be used for computing the initial HBDP estimates

Value

encoding

latin1

concept

High breakdown point

Details

Computes biweight multivariate S-estimator of location and scatter. The computation will be performed by one of the following algorithms: [object Object],[object Object],[object Object],[object Object],.

References

H.P. Lopuha� (1989) On the Relation between S-estimators and M-estimators of Multivariate Location and Covariance. Annals of Statistics 17 1662--1683. D. Ruppert (1992) Computing S Estimators for Regression and Multivariate Location/Dispersion. Journal of Computational and Graphical Statistics 1 253--270. M. Salibian-Barrera and V. Yohai (2006) A fast algorithm for S-regression estimates, Journal of Computational and Graphical Statistics, 15, 414--427. R. A. Maronna, D. Martin and V. Yohai (2006). Robust Statistics: Theory and Methods. Wiley, New York.

Examples

Run this code
library(rrcov)
data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
CovSest(hbk.x)

## the following four statements are equivalent
c0 <- CovSest(hbk.x)
c1 <- CovSest(hbk.x, bdp = 0.25)
c2 <- CovSest(hbk.x, control = CovControlSest(bdp = 0.25))
c3 <- CovSest(hbk.x, control = new("CovControlSest", bdp = 0.25))

## direct specification overrides control one:
c4 <- CovSest(hbk.x, bdp = 0.40,
             control = CovControlSest(bdp = 0.25))
c1
summary(c1)
plot(c1)

## Use the SURREAL algorithm of Ruppert
cr <- CovSest(hbk.x, method="surreal")
cr

## Use Bisquare estimation
cr <- CovSest(hbk.x, method="bisquare")
cr

## Use Rocke type estimation
cr <- CovSest(hbk.x, method="rocke")
cr

Run the code above in your browser using DataLab