Computes MM-Estimates of multivariate location and scatter starting from an initial S-estimate
CovMMest(x, bdp = 0.5, eff = 0.95, eff.shape=TRUE, maxiter = 50,
trace = FALSE, tolSolve = 1e-7, control)
An S4 object of class CovMMest-class
which is a subclass of the
virtual class CovRobust-class
.
a matrix or data frame.
a numeric value specifying the required
breakdown point. Allowed values are between
0.5 and 1 and the default is bdp=0.5
.
a numeric value specifying the required efficiency
for the MM estimates. Default is eff=0.95
.
logical; if TRUE, eff is with regard to shape-efficiency, otherwise location-efficiency. Default is eff.shape=FALSE
.
maximum number of iterations allowed
in the computation of the S-estimate (bisquare and Rocke type).
Default is maxiter=50
.
whether to print intermediate results. Default is trace = FALSE
.
numeric tolerance to be used as a convergence tolerance for the MM-iteration
a control object (S4) of class CovControlMMest-class
containing estimation options - same as these provided in the fucntion
specification. If the control object is supplied, the parameters from it
will be used. If parameters are passed also in the invocation statement, they will
override the corresponding elements of the control object.
Valentin Todorov valentin.todorov@chello.at
Computes MM-estimates of multivariate location and scatter starting from an initial S-estimate.
Tatsuoka, K.S. and Tyler, D.E. (2000). The uniqueness of S and M-functionals under non-elliptical distributions. Annals of Statistics 28, 1219--1243
M. Salibian-Barrera, S. Van Aelstt and G. Willems (2006). Principal components analysis based on multivariate MM-estimators with fast and robust bootstrap. Journal of the American Statistical Association 101, 1198--1211.
R. A. Maronna, D. Martin and V. Yohai (2006). Robust Statistics: Theory and Methods. Wiley, New York.
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1--47. tools:::Rd_expr_doi("10.18637/jss.v032.i03").
library(rrcov)
data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
CovMMest(hbk.x)
## the following four statements are equivalent
c0 <- CovMMest(hbk.x)
c1 <- CovMMest(hbk.x, bdp = 0.25)
c2 <- CovMMest(hbk.x, control = CovControlMMest(bdp = 0.25))
c3 <- CovMMest(hbk.x, control = new("CovControlMMest", bdp = 0.25))
## direct specification overrides control one:
c4 <- CovMMest(hbk.x, bdp = 0.40,
control = CovControlMMest(bdp = 0.25))
c1
summary(c1)
plot(c1)
## Deterministic MM-estmates
CovMMest(hbk.x, control=CovControlMMest(sest=CovControlSest(method="sdet")))
Run the code above in your browser using DataLab