Learn R Programming

rrda (version 0.2.3)

rdasim1: Generate simulated data for Ridge Redundancy Analysis (RDA).

Description

The function generates simulated data for Ridge Redundancy Analysis (RDA). It creates two data matrices, X and Y, based on a set of shared latent variables H. The function adds noise to the data and returns a list containing the matrices X, Y, the latent variables H, and the regression coefficients theta.y used for generating Y.

Usage

rdasim1(n, p, q, k, s2n = c(5, 5))

Value

A list containing matrices X, Y, H, and theta.y.

Arguments

n

The number of samples.

p

The number of variables of X.

q

The number of variables of Y.

k

The number of latent variables.

s2n

The numeric parameters of signal to noise ratio for X and Y, default value is c(1,1).

Examples

Run this code
# Example usage of rdasim1
set.seed(10)
sim_data <- rdasim1(n = 10, p = 5, q = 3, k = 2)
str(sim_data)

Run the code above in your browser using DataLab