# \donttest{
##############################################################################
# Primary endpoint parameters
# Analysis strategy 1: Analysis of the continuous endpoint without
# accounting for any covariates
endpoint_parameters = list(outcome_variable = "outcome",
outcome_censor_variable = "outcome_censor",
outcome_censor_value = "1",
type = "survival",
label = "Outcome",
analysis_method = "Log-rank test",
direction = 1)
# Analysis strategy 2: Analysis of the continuous endpoint using a Cox model
# that accounts for two continuous covariates (cont1, cont2) and
# two class/categorical covariates (class1, class2)
endpoint_parameters = list(outcome_variable = "outcome",
outcome_censor_variable = "outcome_censor",
outcome_censor_value = "1",
type = "survival",
label = "Outcome",
analysis_method = "Cox regression",
cont_covariates = "cont1, cont2",
class_covariates = "class1, class2",
direction = 1)
##############################################################################
# Data set parameters
# Set of candidate biomarkers
biomarker_names = c("biomarker1", "biomarker2",
"biomarker3", "biomarker4",
"biomarker5")
# Biomarker type
biomarker_types = c(rep("numeric", 4), "nominal")
# Data set parameters
data_set_parameters = list(data_set = survival,
treatment_variable_name = "treatment",
treatment_variable_control_value = "0",
biomarker_names = biomarker_names,
biomarker_types = biomarker_types)
##############################################################################
# Algorithm parameters for the basic SIDES procedure
# Algorithm
subgroup_search_algorithm = "SIDES procedure"
# Number of permutations to compute multiplicity-adjusted treatment
# effect p-values within promising subgroups
n_perms_mult_adjust = 10
# Number of processor cores (use less or equal number of CPU cores on the current host)
ncores = 1
# Default values for the search depth (2), search width (2),
# maximum number of unique values for continuous biomarkers (20)
# Algorithm parameters
algorithm_parameters = list(
n_perms_mult_adjust = n_perms_mult_adjust,
min_subgroup_size = 60,
subgroup_search_algorithm = subgroup_search_algorithm,
ncores = ncores,
random_seed = 3011)
# Perform subgroup search
# List of all parameters
parameters = list(endpoint_parameters = endpoint_parameters,
data_set_parameters = data_set_parameters,
algorithm_parameters = algorithm_parameters)
results = SubgroupSearch(parameters)
# Simple summary of subgroup search results
results
# Generate a detailed Word-based report with a summary of subgroup search results
report_information = GenerateReport(results,
report_title = "Subgroup search report",
report_filename = tempfile(
"Time-to-event endpoint (SIDES).docx",
fileext=".docx"
)
)
##############################################################################
# Algorithm parameters for the Fixed SIDEScreen procedure
# Algorithm
subgroup_search_algorithm = "Fixed SIDEScreen procedure"
# Number of permutations to compute multiplicity-adjusted treatment
# effect p-values within promising subgroups
n_perms_mult_adjust = 10
# Number of processor cores (use less or equal number of CPU cores on the current host)
ncores = 1
# Number of biomarkers selected for the second stage in the Fixed SIDEScreen algorithm
n_top_biomarkers = 3
# Default values for the search depth (2), search width (2),
# maximum number of unique values for continuous biomarkers (20)
# Algorithm parameters
algorithm_parameters = list(
n_perms_mult_adjust = n_perms_mult_adjust,
min_subgroup_size = 60,
subgroup_search_algorithm = subgroup_search_algorithm,
ncores = ncores,
n_top_biomarkers = n_top_biomarkers,
random_seed = 3011)
# Perform subgroup search
# List of all parameters
parameters = list(endpoint_parameters = endpoint_parameters,
data_set_parameters = data_set_parameters,
algorithm_parameters = algorithm_parameters)
results = SubgroupSearch(parameters)
# Simple summary of subgroup search results
results
# Generate a detailed Word-based report with a summary of subgroup search results
report_information = GenerateReport(results,
report_title = "Subgroup search report",
report_filename = tempfile(
"Time-to-event endpoint (Fixed SIDEScreen).docx",
fileext=".docx"
)
)
##############################################################################
# Algorithm parameters for the Adaptive SIDEScreen procedure
# Algorithm
subgroup_search_algorithm = "Adaptive SIDEScreen procedure"
# Number of permutations to compute multiplicity-adjusted treatment
# effect p-values within promising subgroups
n_perms_mult_adjust = 10
# Number of processor cores (use less or equal number of CPU cores on the current host)
ncores = 1
# Multiplier for selecting biomarkers for the second stage
# in the Adaptive SIDEScreen algorithm
multiplier = 1
# Number of permutations for computing the null distribution
# of the maximum VI score in the Adaptive SIDEScreen algorithm
n_perms_vi_score = 100
# Default values for the search depth (2), search width (2),
# maximum number of unique values for continuous biomarkers (20)
# Algorithm parameters
algorithm_parameters = list(
n_perms_mult_adjust = n_perms_mult_adjust,
min_subgroup_size = 60,
subgroup_search_algorithm = subgroup_search_algorithm,
ncores = ncores,
multiplier = multiplier,
n_perms_vi_score = n_perms_vi_score,
random_seed = 3011)
# Perform subgroup search
# List of all parameters
parameters = list(endpoint_parameters = endpoint_parameters,
data_set_parameters = data_set_parameters,
algorithm_parameters = algorithm_parameters)
results = SubgroupSearch(parameters)
# Simple summary of subgroup search results
results
# Generate a detailed Word-based report with a summary of subgroup search results
GenerateReport(results,
report_title = "Subgroup search report",
report_filename = tempfile(
"Time-to-event endpoint (Adaptive SIDEScreen).docx",
fileext=".docx"
)
)
# }
Run the code above in your browser using DataLab