Creates second order Factorization Machines model
FactorizationMachine
R6Class
object.
For usage details see Methods, Arguments and Examples sections.
fm = FM$new(learning_rate_w = 0.2, rank = 8, lambda_w = 0, lambda_v = 0, task = c("classification", "regression") intercept = TRUE, learning_rate_v = learning_rate_w) fm$partial_fit(x, y, ...) fm$predict(x, ...)
FM$new(learning_rate_w = 0.2, rank = 8, lambda_w = 1e-6, lambda_v = 1e-6,
task = c("classification", "regression"), intercept = TRUE, learning_rate_v = learning_rate_w)
Constructor for FactorizationMachines model. For description of arguments see Arguments section.
$partial_fit(x, y, ...)
fits/updates model given input matrix x
and target vector y
.
x
shape = (n_samples, n_features)
$predict(x, ...)
predicts output x
FM
object
Input sparse matrix - native format is Matrix::RsparseMatrix
.
If x
is in different format, model will try to convert it to RsparseMatrix
with as(x, "RsparseMatrix")
call
learning rate for linear weights in AdaGrad SGD
learning rate for interactions in AdaGrad SGD
rank of the latent dimension in factorization
regularization parameter for linear terms
regularization parameter for interactions terms
number of features in model (number of columns in expected model matrix)
"regression"
or "classification"