Learn R Programming

rsparse (version 0.3.1)

FactorizationMachine: Creates FactorizationMachine model.

Description

Creates second order Factorization Machines model

Usage

FactorizationMachine

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

fm = FM$new(learning_rate_w = 0.2, rank = 8, lambda_w = 0, lambda_v = 0, task = c("classification", "regression")
  intercept = TRUE, learning_rate_v = learning_rate_w)
fm$partial_fit(x, y, ...)
fm$predict(x, ...)

Methods

FM$new(learning_rate_w = 0.2, rank = 8, lambda_w = 1e-6, lambda_v = 1e-6, task = c("classification", "regression"), intercept = TRUE, learning_rate_v = learning_rate_w)

Constructor for FactorizationMachines model. For description of arguments see Arguments section.

$partial_fit(x, y, ...)

fits/updates model given input matrix x and target vector y. x shape = (n_samples, n_features)

$predict(x, ...)

predicts output x

Arguments

fm

FM object

x

Input sparse matrix - native format is Matrix::RsparseMatrix. If x is in different format, model will try to convert it to RsparseMatrix with as(x, "RsparseMatrix") call

learning_rate_w

learning rate for linear weights in AdaGrad SGD

learning_rate_v

learning rate for interactions in AdaGrad SGD

rank

rank of the latent dimension in factorization

lambda_w

regularization parameter for linear terms

lambda_v

regularization parameter for interactions terms

n_features

number of features in model (number of columns in expected model matrix)

task

"regression" or "classification"