Learn R Programming

rsvddpd

The R package rsvddpd is an acronym for Robust Singular Value Decomposition using Density Power Divergence. As the name suggests, the package mainly concerns with a special function for performing SVD in a robust way in presence of outliers. The details of the algorithm can be found in the paper https://arxiv.org/abs/2109.10680.

There are 3 primary functions in the package.

  • rSVDdpd - Performs the robust SVD of a numeric matrix X.
  • simSVD - Simulates different scenarios to compare performances of SVD algorithms under outlier contamination.
  • cv.alpha - It computes the optimal robustness parameter α for the rSVDdpd algorithm based on the data matrix X.

Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("subroy13/rsvddpd")

Use the following to install the development version with manuals and vignettes, which provides useful information about the structure of the function.

devtools::install_github("subroy13/rsvddpd", build_opts = c("--no-resave-data"), build_manual = TRUE, build_vignettes = TRUE)

Examples

This is a basic example usages which shows the need for the package.

library(rsvddpd)

X <- matrix(1:20, nrow = 4, ncol = 5)
svd(X)
#> $d
#> [1] 5.352022e+01 2.363426e+00 4.870683e-15 7.906968e-16
#> 
#> $u
#>            [,1]       [,2]        [,3]       [,4]
#> [1,] -0.4430188 -0.7097424 -0.52426094  0.1585890
#> [2,] -0.4798725 -0.2640499  0.81721984  0.1793091
#> [3,] -0.5167262  0.1816426 -0.06165685 -0.8343851
#> [4,] -0.5535799  0.6273351 -0.23130204  0.4964870
#> 
#> $v
#>             [,1]        [,2]       [,3]       [,4]
#> [1,] -0.09654784  0.76855612 -0.6000256  0.1704800
#> [2,] -0.24551564  0.48961420  0.5577664 -0.5560862
#> [3,] -0.39448345  0.21067228  0.2312115  0.1606664
#> [4,] -0.54345125 -0.06826963  0.2643802  0.6650059
#> [5,] -0.69241905 -0.34721155 -0.4533325 -0.4400661

As you can see, the first two singular values are 53.5 and 2.36, and the third and fourth singular values are very small positive reals.

Let us see what happens when you contaminate just one entry of the matrix by a large value say 100.

X[2, 3] <- 100
svd(X)
#> $d
#> [1] 1.070340e+02 3.617861e+01 2.200002e+00 1.851858e-15
#> 
#> $u
#>            [,1]       [,2]         [,3]          [,4]
#> [1,] -0.1472125 -0.4893994  0.816938282  2.672612e-01
#> [2,] -0.9548191  0.2971284  0.005940614 -1.110223e-16
#> [3,] -0.1753739 -0.5614500 -0.105644232 -8.017837e-01
#> [4,] -0.1894546 -0.5974754 -0.566935489  5.345225e-01
#> 
#> $v
#>             [,1]       [,2]         [,3]          [,4]
#> [1,] -0.03121244 -0.1097166 -0.798115312  3.357170e-01
#> [2,] -0.08603093 -0.2591083 -0.524844308 -6.516983e-01
#> [3,] -0.94371346  0.3306537 -0.008548386  1.387779e-16
#> [4,] -0.19566792 -0.5578918  0.021697699  6.122270e-01
#> [5,] -0.25048641 -0.7072836  0.294968703 -2.962457e-01

Note that, the first singular value changes drastically, being 107, while second and third singular values 36.1 and 2.2 respectively. However, such error is very common in practice, and can pose serious problem in many statistical estimation techniques. rSVDdpd solves the problem as shown in the following code.

rSVDdpd(X, alpha = 0.3)
#> $d
#> [1] 5.355990e+01 2.358915e+00 1.492008e-01 6.694858e-11
#> 
#> $u
#>           [,1]       [,2]       [,3]          [,4]
#> [1,] 0.4426825 -0.7124356  0.4743827  2.672615e-01
#> [2,] 0.4810583 -0.2588203 -0.8376126  2.697441e-07
#> [3,] 0.5163450  0.1804013  0.2408039 -8.017834e-01
#> [4,] 0.5531753  0.6268197  0.1240144  5.345228e-01
#> 
#> $v
#>            [,1]        [,2]       [,3]          [,4]
#> [1,] 0.09646637  0.77032520  0.2174706 -5.827481e-01
#> [2,] 0.24532578  0.49133794  0.2200041  7.031679e-01
#> [3,] 0.39606323  0.20319890 -0.8954575  5.552961e-07
#> [4,] 0.54304936 -0.06663662  0.2250709  2.214907e-01
#> [5,] 0.69191099 -0.34562390  0.2276043 -3.419085e-01

Author

  • Subhrajyoty Roy, Indian Statistical Institute, Kolkata (Package author and Maintainer)
  • Ayanendranath Basu, Indian Statistical Institute, Kolkata
  • Abhik Ghosh, Indian Statistical Institute, Kolkata

Getting help

If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub.


This package is distributed under MIT license.

Copy Link

Version

Install

install.packages('rsvddpd')

Monthly Downloads

234

Version

1.0.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Subhrajyoty Roy

Last Published

September 20th, 2025

Functions in rsvddpd (1.0.1)

rSVDdpd

Robust Singular Value Decomposition using Density Power Divergence
simSVD

Simulate SVD and measure performances of various algorithms
rank.rSVDdpd

Rank Estimation for Robust Singular Value Decomposition
AddOutlier

Add outlier to matrix
cv.alpha

Calculate optimal robustness parameter