Learn R Programming

rtables (version 0.6.6)

select_all_levels: Add Combination Levels to split

Description

Add Combination Levels to split

Usage

select_all_levels

add_combo_levels(combosdf, trim = FALSE, first = FALSE, keep_levels = NULL)

Value

a closure suitable for use as a splitting function (splfun) when creating a table layout

Format

An object of class AllLevelsSentinel of length 0.

Arguments

combosdf

data.frame/tbl_df. Columns valname, label, levelcombo, exargs. Of which levelcombo and exargs are list columns. Passing the select_all_levels object as a value in the comblevels column indicates that an overall/all-observations level should be created.

trim

logical(1). Should splits corresponding with 0 observations be kept when tabulating.

first

logical(1). Should the created split level be placed first in the levels (TRUE) or last (FALSE, the default).

keep_levels

character or NULL. If non-NULL, the levels to retain across both combination and individual levels.

Examples

Run this code
library(tibble)
combodf <- tribble(
  ~valname, ~label, ~levelcombo, ~exargs,
  "A_B", "Arms A+B", c("A: Drug X", "B: Placebo"), list(),
  "A_C", "Arms A+C", c("A: Drug X", "C: Combination"), list()
)

lyt <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ARM", split_fun = add_combo_levels(combodf)) %>%
  analyze("AGE")

tbl <- build_table(lyt, DM)
tbl

lyt1 <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ARM",
    split_fun = add_combo_levels(combodf,
      keep_levels = c(
        "A_B",
        "A_C"
      )
    )
  ) %>%
  analyze("AGE")

tbl1 <- build_table(lyt1, DM)
tbl1

smallerDM <- droplevels(subset(DM, SEX %in% c("M", "F") &
  grepl("^(A|B)", ARM)))
lyt2 <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ARM", split_fun = add_combo_levels(combodf[1, ])) %>%
  split_cols_by("SEX",
    split_fun = add_overall_level("SEX_ALL", "All Genders")
  ) %>%
  analyze("AGE")

lyt3 <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ARM", split_fun = add_combo_levels(combodf)) %>%
  split_rows_by("SEX",
    split_fun = add_overall_level("SEX_ALL", "All Genders")
  ) %>%
  summarize_row_groups() %>%
  analyze("AGE")

tbl3 <- build_table(lyt3, smallerDM)
tbl3

Run the code above in your browser using DataLab