Estimates the Gini inequality index of an income distribution.
gini(dataset, ipuc = "ipuc", hhcsw = "DB090", hhsize = "HX040",
ci = NULL, rep = 1000, verbose = FALSE)
a data.frame containing the variables.
a character string indicating the variable name of the income per unit of consumption. Default is "ipuc".
a character string indicating the variable name of the household cross-sectional weight. Default is "DB090".
a character string indicating the variable name of the household size. Default is "HX040".
a scalar or vector containing the confidence level(s) of the required interval(s). Default does not calculate the confidence interval.
a number to do the confidence interval using boostrap technique.
logical; if TRUE the confidence interval is plotted.
The value of the Gini index.
The Gini index is calculated using the equivalised disposable income of each individual. Two types of equivalence scales can be used, the modified OECD scale and the parametric scale of Buhmann et al. (1988). The default is the modified OECD scale (see setupDataset).
B. Buhmann et al. (1988) Equivalence scales, well-being, inequality and poverty: sensitivity estimates across ten countries using the Luxembourg Income Study (LIS) database, Review of Income and Wealth, 34, 115--142.
E. Ferreira and A. Gar<U+00ED>n (1997) Una nota sobre el c<U+00E1>lculo del <U+00ED>ndice de Gini, Estad<U+00ED>stica Espa<U+00F1>ola, 39(142), 207--218.
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Gini_coefficient
setupDataset
# NOT RUN {
data(eusilc2)
ATdataset <- setupDataset(eusilc2, country = "AT")
gini(ATdataset)
# }
Run the code above in your browser using DataLab