Learn R Programming

rtkpp (version 0.8.5)

clusterAlgo: Create an instance of the [ClusterAlgo] class

Description

There is three algorithms and two stopping rules possibles for an algorithm.
  • Algorithms:
    • EM{The Expectation Maximisation algorithm.}
    • CEM{The Classification EM algorithm.}
    • SEM{The Stochastic EM algorithm.}
    • SemiSEM{The Semi-Stochastic EM algorithm.}
  • Stopping rules:
    • nbIteration{Set the maximum number of iterations.}
    • epsilon{Set relative increase of the log-likelihood criterion.}
  • Default values are$200$nbIterationofEMwith anepsilonvalue of$1.e-8$.

Usage

clusterAlgo(algo = "EM", nbIteration = 200, epsilon = 1e-08)

Arguments

algo
character string with the estimation algorithm. Possible values are "EM", "SEM", "CEM", "SemiSEM". Default value is "EM".
nbIteration
Integer defining the maximal number of iterations. Default value is 200.
epsilon
Real defining the epsilon value for the algorithm. Note that epsilon is not used by the SEM algorithm. Default value is 1.e-8.

Value

  • a [ClusterAlgo] object

Examples

Run this code
clusterAlgo()
clusterAlgo(algo="SEM", nbIteration=50)
clusterAlgo(algo="CEM", epsilon = 1e-06)

Run the code above in your browser using DataLab