########################################################################################
# Detect-Guess variant of the Two-High Threshold model.
# The encoding and motor execution times are assumed to be different for each response.
########################################################################################
mdl_2HTM <- "
# targets
d+(1-d)*g ; 0
(1-d)*(1-g) ; 1
# lures
(1-d)*g ; 0
d+(1-d)*(1-g) ; 1
# d: detect; g: guess
"
model <- to_ertmpt_model(mdl_file = mdl_2HTM)
params <- list(mean_of_exp_mu_beta = 10,
var_of_exp_mu_beta = 10,
mean_of_mu_gamma = 0.5,
var_of_mu_gamma = 0.0025,
mean_of_omega_sqr = 0.005,
var_of_omega_sqr = 0.000025,
df_of_sigma_sqr = 10,
sf_of_scale_matrix_SIGMA = 0.1,
sf_of_scale_matrix_GAMMA = 0.01,
prec_epsilon = 10,
add_df_to_invWish = 5)
# \donttest{
R = 2 # typically 2000 with n.eff_samples = 99, but this will run many days
rank_mat <- matrix(NA, ncol = 393, nrow = 2)
for (r in 1:R) {
SBC_out <- fit_ertmpt_SBC(model, seed = r*123, prior_params = params,
n.eff_samples = 99, n.thin = 5,
n.iter = 5000, n.burnin = 2000, Irep = 5000)
rank_mat[r, ] <- SBC_out$ranks
}
# }
Run the code above in your browser using DataLab