########################################################################################
# Detect-Guess variant of the Two-High Threshold model
# with constant guessing and
# suppressed process completion times for both failed detections.
# The encoding and motor execution times are assumed to be different for each response.
########################################################################################
## 1. using the mdl syntax
mdl_2HTM <- "
# targets
do+(1-do)*g ; 0
(1-do)*(1-g) ; 1
# lures
(1-dn)*g ; 0
dn+(1-dn)*(1-g) ; 1
# do: detect old; dn: detect new; g: guess
# OPTIONAL MPT CONSTRAINTS
# for constant thetas and suppressed taus
# please use theta2cons() and tau2
"
model <- to_ertmpt_model(mdl_file = mdl_2HTM)
model
## 2. using the eqn syntax
eqn_2HTM <- "
# CORE MPT EQN
# tree ; cat ; mpt
0 ; 0 ; do
0 ; 0 ; (1-do)*g
0 ; 1 ; (1-do)*(1-g)
1 ; 2 ; (1-dn)*g
1 ; 3 ; dn
1 ; 3 ; (1-dn)*(1-g)
# OPTIONAL MPT CONSTRAINTS
# for constant thetas and suppressed taus
# please use theta2cons() and tau2
# tree ; cat ; MAP
resp: 0 ; 0 ; 0
resp: 0 ; 1 ; 1
resp: 1 ; 2 ; 0
resp: 1 ; 3 ; 1
# different motor execution times for old and new responses.
"
model <- to_ertmpt_model(eqn_file = eqn_2HTM)
model
mdl_2HTM <- "
# targets
do+(1-do)*g ; 0
(1-do)*(1-g) ; 1
# lures
(1-dn)*g ; 0
dn+(1-dn)*(1-g) ; 1
# do: detect old; dn: detect new; g: guess
"
model <- to_rtmpt_model(mdl_file = mdl_2HTM)
model
Run the code above in your browser using DataLab