ugarchboot(fitORspec, data = NULL, method = c("Partial", "Full"),
sampling = c("raw", "kernel", "spd"), spd.options = list(upper = 0.9,
lower = 0.1, type = "pwm", kernel = "normal"), n.ahead = 10,
n.bootfit = 100, n.bootpred = 500, out.sample = 0, rseed = NA, solver = "solnp",
solver.control = list(), fit.control = list(),
external.forecasts = list(mregfor = NULL, vregfor = NULL), mexsimdata = NULL,
vexsimdata = NULL, cluster = NULL, verbose = FALSE)
uGARCHfit
or
alternatively a univariate GARCH specification object of class uGARCHspec
with valid parameters supplied via the spd
package for details).ugarchfit
method).makeCluster
from the parallel
package. If it is not NULL, then this will be used for parallel estimation
of the refits (remember to stop the cluster on completion).uGARCHboot
object containing details of the GARCH
bootstrapped forecast density.ugarchdistribution
is available and recommended). The
ugarchforecast
routine) and a list
of simulated forecasts as in the ugarchsim
routine (else with be
assumed zero). Finally, it is possible to resample based on 3 schemes, namely
the ks
package in order to then generate random samples, and the spd
package in order to generate the random samples, for which an optional list
(spd.options
) may be further passed to the spd fitting routine.ugarchspec
, fitting ugarchfit
,
filtering ugarchfilter
, forecasting ugarchforecast
,
simulation ugarchsim
, rolling forecast and estimation
ugarchroll
, parameter distribution and uncertainty
ugarchdistribution
.data(dji30ret)
spec = ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(1,1), arfima=FALSE, include.mean=TRUE,
archm = FALSE, archpow = 1), distribution.model="std")
ctrl = list(tol = 1e-7, delta = 1e-9)
fit = ugarchfit(data=dji30ret[, "BA", drop = FALSE], out.sample = 0,
spec = spec, solver = "solnp", solver.control = ctrl,
fit.control = list(scale = 1))
bootpred = ugarchboot(fit, method = "Partial", n.ahead = 120, n.bootpred = 2000)
bootpred
# as.data.frame(bootpred, which = "sigma", type = "q", qtile = c(0.01, 0.05))
Run the code above in your browser using DataLab