ugarchspec
, fitting ugarchfit
,
forecasting ugarchforecast
, simulation from fit object
ugarchsim
, path simulation from specification object
ugarchpath
, parameter distribution by simulation
ugarchdistribution
, bootstrap forecast ugarchboot
and rolling estimation and forecast ugarchroll
. There are also
some functions which enable multiple fitting of assets in an easy to use wrapper
with the option of multicore functionality, namely multispec
,
multifit
, multifilter
and multiforecast
.
Explanations on the available methods for the returned classes can be found in
the documentation for those classes.
A separate subset of methods and classes has been included to calculate pure
ARFIMA models with constant variance. This subset includes similar functionality
as with the GARCH methods, with the exception that no plots are yet implemented,
and neither is a forecast based on the bootstrap. These may be added in the
future. While there are limited examples in the documentation on the ARFIMA
methods, the interested user can search the rugarch.tests folder of the source
installation for some tests using ARFIMA models as well as equivalence to the
base R arima methods (particularly replication of simulation). Finally, no
representation is made about the adequacy of ARFIMA models, particularly the
statistical properties of parameters when using distributions which go beyond
the Gaussian.
The conditional distributions used in the package are also exposed for the
benefit of the user through the rgarchdist
functions which contain
methods for density, distribution, quantile, sampling and fitting. Additionally,
ghyptransform
function provides the necessary parameter
transformation and scaling methods for moving from the location scale invariant
Date
. This mostly impacts
the plots and forecast summary methods. For high frequency data, the user should
make use of a non-named representation such as ForwardDates
and WeekDayDummy
offer some simple Date
manipulation methods for working with forecast dates and creating day of the
week dummy variables for use in GARCH modelling.
Some benchmarks (published and comparison with commercial package), are
available through the ugarchbench
function. The