ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1),
submodel = NULL, external.regressors = NULL, variance.targeting = FALSE),
mean.model = list(armaOrder = c(1, 1), include.mean = TRUE, archm = FALSE,
archpow = 1, arfima = FALSE, external.regressors = NULL),
distribution.model = "norm", start.pars = list(), fixed.pars = list(), ...)
model
Valid models (currently implemented) are armaOrder
The autoregressive (ar) and moving average (ma) orders (if any).
include.mean
Whether to include the mean.
archm
Whether to include ARCH volatility in the mean uGARCHspec
object containing details of the GARCH
specification.alpha
.
Variance targeting, referred to in Engle and Mezrich (1996), replaces the
intercept mu
AR term ar1
MA term ma1
ARCH in mean archm
exogenous regressors mxreg1
arfima arfima
}
Distribution Model:
lambda (for GHYP distribution)
skew skew
shape shape
}
Variance Model (common specs):
omega
ARCH term alpha1
GARCH term beta1
exogenous regressors vxreg1
}
Variance Model (GJR, EGARCH):
gamma1
}
Variance Model (APARCH):
gamma1
power term delta
}
Variance Model (FGARCH):
eta11
assymetry term2 (shift) eta21
power term1(shock) delta
power term2(variance) lambda
}# a standard specification
spec1 = ugarchspec()
spec1
# an example which keep the ar1 and ma1 coefficients fixed:
spec2 = ugarchspec(mean.model=list(armaOrder=c(2,2),
fixed.pars=list(ar1=0.3,ma1=0.3)))
spec2
# an example of the EWMA Model
spec3 = ugarchspec(variance.model=list(model="iGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0), include.mean=TRUE),
distribution.model="norm", fixed.pars=list(omega=0))
Run the code above in your browser using DataLab