This module provides the following distributions for JAGS:PARETO TYPE I: dpar1(alpha, sigma)
$$p(x) = \alpha \sigma^{\alpha} x^{-\left(\alpha+1 \right)}$$
$$\alpha > 0, \sigma > 0, x > \sigma$$
PARETO TYPE II: dpar2(alpha, sigma, mu)
$$p(x) = \frac{\alpha}{\sigma} \left( \frac{\alpha + x - \mu}{\sigma}\right)^{-\left(\alpha+1\right)}$$
$$\alpha > 0, \sigma > 0, x > \mu$$
PARETO TYPE III: dpar3(sigma, mu, gamma)
$$p(x) = \frac{\frac{x-\mu}{\sigma}^{\frac{1}{\gamma}-1} \left(\frac{x-\mu}{\sigma}^{\frac{1}{\gamma}} +1\right)^{-2}}{\gamma \sigma}$$
$$\sigma > 0, \gamma > 0, x > \mu$$
PARETO TYPE IV: dpar4(alpha, sigma, mu, gamma)
$$p(x) = \frac{\alpha \frac{x-\mu}{\sigma}^{\frac{1}{\gamma}-1} \left(\frac{x-\mu}{\sigma}^{\frac{1}{\gamma}} +1\right)^{-\left(\alpha+1\right)}}{\gamma \sigma}$$
$$\alpha > 0, \sigma > 0, \gamma > 0, x > \mu$$
LOMAX: dlomax(alpha, sigma)
$$p(x) = \frac{\alpha}{\sigma} \left(1 + \frac{x}{\sigma}\right)^{-\left(\alpha+1\right)}$$
$$\alpha > 0, \sigma > 0, x > 0$$
DUMOUCHEL: dmouch(sigma)
$$p(x) = \frac{\sigma}{\left(x+\sigma\right)^2}$$
$$\sigma > 0, x > 0$$
GENERALISED PARETO: dgenpar(sigma, mu, xi)
$$p(x) = \frac{1}{\sigma} \left(1 + \xi \left(\frac{x-\mu}{\sigma}\right)\right)^{-\left(\frac{1}{\xi}+1\right)}$$
For $\xi=0$:
$$p(x) = \frac{1}{\sigma} e^{\frac{-\left(x-\mu\right)}{\sigma}}$$
$$\sigma > 0, x > \mu$$
For an easier to read version of these PDF equations, either see the PDF version of the
help files or the 'module_distributions.pdf' file included in the doc folder of this
package.