
Last chance! 50% off unlimited learning
Sale ends in
Represents a generic autoencoder network.
autoencoder(network, loss = "mean_squared_error")
A construct of class "ruta_autoencoder"
Layer construct of class "ruta_network"
or coercible
A "ruta_loss"
object or a character string specifying a loss function
train.ruta_autoencoder
Other autoencoder variants:
autoencoder_contractive()
,
autoencoder_denoising()
,
autoencoder_robust()
,
autoencoder_sparse()
,
autoencoder_variational()
# Basic autoencoder with a network of [input]-256-36-256-[input] and
# no nonlinearities
autoencoder(c(256, 36), loss = "binary_crossentropy")
# Customizing the activation functions in the same network
network <-
input() +
dense(256, "relu") +
dense(36, "tanh") +
dense(256, "relu") +
output("sigmoid")
learner <- autoencoder(
network,
loss = "binary_crossentropy"
)
Run the code above in your browser using DataLab