Learn R Programming

rxode2ll

The goal of rxode2ll is to create log-likelihood functions for use in ‘rxode2’ and ‘nlmixr2’

Installation

You can install the development version of rxode2ll from GitHub with:

# install.packages("devtools")
devtools::install_github("nlmixr2/rxode2ll")

Examples

Each of the C++ interface to the stan log-likelihood equations can be used in a stand-alone manner. For example:

llikNorm(seq(-2,2,length.out=10), full=TRUE)

The following log-likelihood distributions are supported:

  • llikNorm()
  • llikPois()
  • llikBinom()
  • llikNbinom()
  • llikNbinomMu()
  • llikBeta()
  • llikT()
  • llikChisq()
  • llikExp()
  • llikF()
  • llikGeom()
  • llikUnif()
  • llikWeibull()
  • llikGamma()
  • llikCauchy()

Copy Link

Version

Install

install.packages('rxode2ll')

Monthly Downloads

1,783

Version

2.0.13

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Matthew Fidler

Last Published

December 15th, 2024

Functions in rxode2ll (2.0.13)

llikChisq

log likelihood and derivatives for chi-squared distribution
llikCauchy

log likelihood of Cauchy distribution and it's derivatives (from stan)
llikNbinomMu

Calculate the log likelihood of the negative binomial function (and its derivatives)
llikNbinom

Calculate the log likelihood of the negative binomial function (and its derivatives)
llikBinom

Calculate the log likelihood of the binomial function (and its derivatives)
llikGeom

log likelihood and derivatives for Geom distribution
llikGamma

log likelihood and derivatives for Gamma distribution
llikBeta

Calculate the log likelihood of the binomial function (and its derivatives)
llikF

log likelihood and derivatives for F distribution
llikExp

log likelihood and derivatives for exponential distribution
llikWeibull

log likelihood and derivatives for Weibull distribution
llikUnif

log likelihood and derivatives for Unif distribution
llikT

Log likelihood of T and it's derivatives (from stan)
llikNorm

Log likelihood for normal distribution
llikPois

log-likelihood for the Poisson distribution