# This example computes the EOFs along forecast horizons and plots the one
# that explains the greatest amount of variability. The example data has low
# resolution so the result may not be explanatory, but it displays how to
# use this function.
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- LoadSampleData(startDates,
leadtimemin = 1,
leadtimemax = 4,
output = 'lonlat')
ano <- Ano_CrossValid(sampleData$mod, sampleData$obs)
tmp <- MeanDims(ano$exp, c('dataset', 'member'))
ano <- tmp[1, , ,]
names(dim(ano)) <- names(dim(tmp))[-2]
eof <- EOF(ano, sampleData$lat, sampleData$lon, neofs = 4)
# \donttest{
PlotEquiMap(eof$EOFs[1, , ], sampleData$lon, sampleData$lat)
# }
Run the code above in your browser using DataLab