Learn R Programming

s2dverification (version 2.10.3)

Ano: Computes Forecast or Observed Anomalies

Description

This function computes anomalies from any experimental or observational matrix output from Load() and their climatologies output from Clim().

Usage

Ano(var, clim)

Arguments

var

Model or observational data: c(nmod/nexp/nobs, nmemb/nparam, nsdates, nltime) up to c(nmod/nexp/nobs, nmemb/nparam, nsdates, nltime, nlevel, nlat, nlon)

clim

Climatologies from clim: c(nmod/nexp/nobs, nltime) up to c(nmod/nexp/nobs, nltime, nlevel, nlat, nlon) or c(nmod/nexp/nobs, nmemb/nparam, nltime) up to c(nmod/nexp/nobs, nmemb/nparam, nltime, nlevel, nlat, nlon) or c(nmod/nexp/nobs, nmemb/nparam, nsdates, nltime) up to c(nmod/nexp/nobs, nmemb/nparam, nsdates, nltime, nlevel, nlat, nlon) depending on the options provided to Clim().

Value

Array with same dimensions as 'var'.

Examples

Run this code
# NOT RUN {
# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
runmean_nb_months <- 12
dim_to_smooth <- 4  # Smooth along lead-times
smooth_ano_exp <- Smoothing(ano_exp, runmean_nb_months, dim_to_smooth)
smooth_ano_obs <- Smoothing(ano_obs, runmean_nb_months, dim_to_smooth)
 
# }
# NOT RUN {
PlotAno(smooth_ano_exp, smooth_ano_obs, startDates, 
       toptitle = paste('smoothed anomalies'), ytitle = c('K', 'K', 'K'), 
       legends = 'ERSST', biglab = FALSE, fileout = 'tos_ano.eps')
 
# }

Run the code above in your browser using DataLab