Learn R Programming

s2dverification (version 2.4.0)

PlotACC: Plot Plumes/Timeseries Of Anomaly Correlation Coefficients

Description

Plots plumes/timeseries of ACC from a matrix with dimensions (output from ACC()): c(nexp, nobs, nsdates, nltime, 4) with the fourth dimension of length 4 containing the lower limit of the 95% confidence interval, the ACC, the upper limit of the 95% confidence interval and the 95% significance level given by a one-sided T-test.

Usage

PlotACC(ACC, sdates, toptitle = "", sizetit = 1, ytitle = "", limits = NULL, 
        legends = NULL, freq = 12, biglab = FALSE, fill = FALSE, 
        linezero = FALSE, points = TRUE, vlines = NULL, 
        fileout = "output_PlotACC.eps")

Arguments

Examples

Run this code
# See examples on Load() to understand the first lines in this example
  configfile <- paste0(tempdir(), '/sample.conf')
ConfigFileCreate(configfile, confirm = FALSE)
c <- ConfigFileOpen(configfile)
c <- ConfigEditDefinition(c, 'DEFAULT_GRID', 'r20x10', confirm = FALSE)
c <- ConfigEditDefinition(c, 'DEFAULT_VAR_MIN', '-1e19', confirm = FALSE)
c <- ConfigEditDefinition(c, 'DEFAULT_VAR_MAX', '1e19', confirm = FALSE)
c <- ConfigAddVar(c, '2d', 'tos')
data_path <- system.file('sample_data', package = 's2dverification')
exp_data_path <- paste0(data_path, '/model/$EXP_NAME$')
obs_data_path <- paste0(data_path, '/$OBS_NAME$')
c <- ConfigAddEntry(c, 'experiments', 'file-per-startdate',
     dataset_name = 'experiment', var_name = 'tos', main_path = exp_data_path,
     file_path = '$STORE_FREQ$_mean/$VAR_NAME$_3hourly/$VAR_NAME$_$START_DATE$.nc')
c <- ConfigAddEntry(c, 'observations', 'file-per-month',
     dataset_name = 'observation', var_name = 'tos', main_path = obs_data_path,
     file_path = '$STORE_FREQ$_mean/$VAR_NAME$/$VAR_NAME$_$YEAR$$MONTH$.nc')
ConfigFileSave(c, configfile, confirm = FALSE)
# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', c('experiment'), c('observation'), startDates, 
                   leadtimemin = 1, leadtimemax = 4, output = 'lonlat', 
                   latmin = 27, latmax = 48, lonmin = -12, lonmax = 40, 
                   configfile = configfile)
  startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- s2dverification:::.LoadSampleData('tos', c('experiment'), 
                                                c('observation'), startDates,
                                                leadtimemin = 1,
                                                leadtimemax = 4,
                                                output = 'lonlat', 
                                                latmin = 27, latmax = 48, 
                                                lonmin = -12, lonmax = 40)
sampleData$mod <- Season(sampleData$mod, 4, 11, 12, 2)
sampleData$obs <- Season(sampleData$obs, 4, 11, 12, 2)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
acc <- ACC(Mean1Dim(sampleData$mod, 2), 
           Mean1Dim(sampleData$obs, 2))
PlotACC(acc$ACC, startDates, toptitle = "Anomaly Correlation Coefficient")

Run the code above in your browser using DataLab