dkprime(x, v1, v2, a, b = 1, order.max=6, log = FALSE)pkprime(q, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
qkprime(p, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
rkprime(n, v1, v2, a, b = 1)
v2 degrees of freedom and non-centrality
parameter a, scaled by b.
This is not recycled againsx,q,p,n.x,q,p,n.x,q,p,n.dkprime gives the density, pkprime gives the
distribution function, qkprime gives the quantile function,
and rkprime generates random deviates.Invalid arguments will result in return value NaN with a warning.
Equivalently, we can think of $$T = \frac{b Z + a \sqrt{\chi^2_{\nu_1} / \nu_1}}{\sqrt{\chi^2_{\nu_2} / \nu_2}}$$ where $Z$ is a standard normal, and the normal and the (central) chi-squares are independent of each other. When $a=0$ we recover a central t distribution; when $\nu_1=\infty$ we recover a rescaled non-central t distribution; when $b=0$, we get a rescaled square root of a central F distribution; when $\nu_2=\infty$, we recover a Lambda prime distribution.
Poitevineau, Jacques, and Lecoutre, Bruno. "Implementing Bayesian predictive
procedures: The K-prime and K-square distributions." Computational Statistics
and Data Analysis 54, no. 3 (2010): 724-731.
dt, pt, qt, rt,
lambda prime distribution functions, dlambdap, plambdap, qlambdap, rlambdap.d1 <- dkprime(1, 50, 20, a=0.01)
d2 <- dkprime(1, 50, 20, a=0.0001)
d3 <- dkprime(1, 50, 20, a=0)
d4 <- dkprime(1, 10000, 20, a=1)
d5 <- dkprime(1, Inf, 20, a=1)Run the code above in your browser using DataLab