Density, distribution function, quantile function and random generation for the K prime distribution.
dkprime(x, v1, v2, a, b = 1, order.max=6, log = FALSE)pkprime(q, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
qkprime(p, v1, v2, a, b = 1, order.max=6, lower.tail = TRUE, log.p = FALSE)
rkprime(n, v1, v2, a, b = 1)
dkprime
gives the density, pkprime
gives the
distribution function, qkprime
gives the quantile function,
and rkprime
generates random deviates.
Invalid arguments will result in return value NaN
with a warning.
vector of quantiles.
the degrees of freedom in the numerator chisquare. When
(positive) infinite, we recover a non-central t
distribution with v2
degrees of freedom and non-centrality
parameter a
, scaled by b
.
This is not recycled against the x,q,p,n
.
the degrees of freedom in the denominator chisquare.
When equal to infinity, we recover the Lambda prime distribution.
This is not recycled against the x,q,p,n
.
the non-centrality scaling parameter. When equal to zero,
we recover the (central) t distribution.
This is not recycled against the x,q,p,n
.
the scaling parameter.
This is not recycled against the x,q,p,n
.
the order to use in the approximate density, distribution, and quantile computations, via the Gram-Charlier, Edeworth, or Cornish-Fisher expansion.
logical; if TRUE, densities \(f\) are given as \(\mbox{log}(f)\).
vector of probabilities.
number of observations.
logical; if TRUE, probabilities p are given as \(\mbox{log}(p)\).
logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).
Steven E. Pav shabbychef@gmail.com
Suppose \(y \sim \chi^2\left(\nu_1\right)\), and \(x \sim t \left(\nu_2, a\sqrt{y/\nu_1}/b\right)\). Then the random variable $$T = b x$$ takes a K prime distribution with parameters \(\nu_1, \nu_2, a, b\). In Lecoutre's terminology, \(T \sim K'_{\nu_1, \nu_2}\left(a, b\right)\)
Equivalently, we can think of $$T = \frac{b Z + a \sqrt{\chi^2_{\nu_1} / \nu_1}}{\sqrt{\chi^2_{\nu_2} / \nu_2}}$$ where \(Z\) is a standard normal, and the normal and the (central) chi-squares are independent of each other. When \(a=0\) we recover a central t distribution; when \(\nu_1=\infty\) we recover a rescaled non-central t distribution; when \(b=0\), we get a rescaled square root of a central F distribution; when \(\nu_2=\infty\), we recover a Lambda prime distribution.
Lecoutre, Bruno. "Two Useful distributions for Bayesian predictive procedures under normal models." Journal of Statistical Planning and Inference 79, no. 1 (1999): 93-105.
Poitevineau, Jacques, and Lecoutre, Bruno. "Implementing Bayesian predictive procedures: The K-prime and K-square distributions." Computational Statistics and Data Analysis 54, no. 3 (2010): 724-731. https://arxiv.org/abs/1003.4890v1
d1 <- dkprime(1, 50, 20, a=0.01)
d2 <- dkprime(1, 50, 20, a=0.0001)
d3 <- dkprime(1, 50, 20, a=0)
d4 <- dkprime(1, 10000, 20, a=1)
d5 <- dkprime(1, Inf, 20, a=1)
Run the code above in your browser using DataLab