Density, distribution function, quantile function and random generation for the lambda prime distribution.
dlambdap(x, df, t, log = FALSE, order.max=6)plambdap(q, df, t, lower.tail = TRUE, log.p = FALSE, order.max=6)
qlambdap(p, df, t, lower.tail = TRUE, log.p = FALSE, order.max=6)
rlambdap(n, df, t)
dlambdap
gives the density, plambdap
gives the
distribution function, qlambdap
gives the quantile function,
and rlambdap
generates random deviates.
Invalid arguments will result in return value NaN
with a warning.
vector of quantiles.
the degrees of freedom in the chi square.
This is not recycled against the x,q,p,n
.
the scaling parameter on the chi.
This is not recycled against the x,q,p,n
.
logical; if TRUE, densities \(f\) are given as \(\mbox{log}(f)\).
the order to use in the approximate density, distribution, and quantile computations, via the Gram-Charlier, Edeworth, or Cornish-Fisher expansion.
vector of probabilities.
number of observations.
logical; if TRUE, probabilities p are given as \(\mbox{log}(p)\).
logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).
Steven E. Pav shabbychef@gmail.com
Suppose \(y \sim \chi^2\left(\nu\right)\), and \(Z\) is a standard normal. $$T = Z + t \sqrt{y/\nu}$$ takes a lambda prime distribution with parameters \(\nu, t\). A lambda prime random variable can be viewed as a confidence level on a non-central t because $$t = \frac{Z' + T}{\sqrt{y/\nu}}$$
Lecoutre, Bruno. "Another look at confidence intervals for the noncentral t distribution." Journal of Modern Applied Statistical Methods 6, no. 1 (2007): 107--116. https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1128&context=jmasm
Lecoutre, Bruno. "Two useful distributions for Bayesian predictive procedures under normal models." Journal of Statistical Planning and Inference 79 (1999): 93--105.
rv <- rlambdap(100, 50, t=0.01)
d1 <- dlambdap(1, 50, t=0.01)
pv <- plambdap(rv, 50, t=0.01)
qv <- qlambdap(ppoints(length(rv)), 50, t=1)
Run the code above in your browser using DataLab