# NOT RUN {
data(incomedata) # Load data set
attach(incomedata)
# Construct design matrix for sample elements
Xs<-cbind(age2,age3,age4,age5,nat1,educ1,educ3,labor1,labor2)
# Select the domains to compute EB estimators
data(Xoutsamp)
domains <- c(5)
# Poverty incidence indicator
povertyline <- 0.6*median(incomedata$income)
povertyline # 6477.484
povinc <- function(y)
{
z <- 6477.484
result <- mean(y<z)
return (result)
}
# Compute parametric bootstrap MSE estimators of the EB
# predictors of poverty incidence. Take constant=3600 to achieve
# approximately symmetric residuals.
set.seed(123)
result <- pbmseebBHF(income~Xs, dom=prov, selectdom=domains,
Xnonsample=Xoutsamp, B=2, MC=2, constant=3600,
indicator=povinc)
result$est$eb
result$mse
result$est$fit$refvar
detach(incomedata)
# }
Run the code above in your browser using DataLab