Learn R Programming

saeHB.panel.beta (version 0.1.5)

dataPanelbeta: Sample Data under Beta Distribution for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model when rho = 0

Description

Dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian Method for Rao-Yu Model with rho = 0 This data is generated by these following steps:

  1. Generate random effect area v, random effect for area i at time point j u, epsilon \(\epsilon\), variance of ydi vardir, sampling error e, auxiliary xdi1 and xdi2

    • Set coefficient \(\beta_{0}=\beta_{1}=\beta_{2}=2\)

    • Generate random effect area v_{i}~N(0,1)

    • Generate auxiliary variable xdi1_{ij}~U(0,1)

    • Generate auxiliary variable xdi2_{ij}~U(0,1)

    • Generate epsilon \(\epsilon_{ij}\)~N(0,1)

    • Generate \(\phi_{ij}\)~Gamma(1,0.5)

    • Calculate \(\mu_{ij}=\frac{\exp{\beta_{0}+\beta_{1}xdi1_{ij}+\beta_{2}xdi2_{ij}+v_{i}+\epsilon_{ij}}}{(1+\exp{\beta_{0}+\beta_{1}xdi1_{ij}+\beta_{2}xdi2_{ij}+v_{i}+\epsilon_{ij}})}\)

    • Calculate \(A_{ij}=\mu_{ij}*\phi_{ij}\)

    • Calculate \(B_{ij}=(1-\mu_{ij})*\phi_{ij}\)

    • Generate ydi y_{ij}~Beta(A_{ij},B_{ij})

    • Calculate variance of ydi with \(vardir_{ij}=\frac{(A_{ij})(B_{ij})}{(A_{ij}+B_{ij})^2(A_{ij}+B_{ij}+1)}\)

    • Set area=20 and period=5

  2. Auxiliary variables xdi1,xdi2, direct estimation y, area, period, and vardir are combined in a dataframe called dataPanel

Usage

dataPanelbeta

Arguments

Format

A data frame with 100 rows and 6 variables:

ydi

Direct Estimation of y

area

Area (domain) of the data

period

Period (subdomain) of the data

vardir

Sampling Variance of y

xdi1

Auxiliary variable of xdi1

xdi2

Auxiliary variable of xdi2