# \donttest{
#Data Generation
set.seed(123)
m=30
x1=runif(m,0,1)
x2=runif(m,0,1)
b0=b1=b2=0.5
u=rnorm(m,0,1)
n.samp1=round(runif(m,10,30))
mu= exp(b0 + b1*x1+b2*x2+u)/(1+exp(b0 + b1*x1+b2*x2+u))
y=rbinom(m,n.samp1,mu)
vardir=n.samp1*mu*(1-mu)
dataBinomial=as.data.frame(cbind(y,x1,x2,n.samp=n.samp1,vardir))
dataBinomialNs = dataBinomial
dataBinomialNs$y[c(3,14,22,29,30)] <- NA
dataBinomialNs$vardir[c(3,14,22,29,30)] <- NA
dataBinomialNs$n.samp[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y~x1+x2
## For data without any nonsampled area
formula = y~x1+x2
n.s = "n.samp"
vc = c(1,1,1)
c = c(0,0,0)
dat = dataBinomial
## Using parameter coef and var.coef
saeHBBinomial<-Binomial(formula,n.samp=n.s,iter.update=10,coef=c,var.coef=vc,data =dat)
saeHBBinomial$Est #Small Area mean Estimates
saeHBBinomial$refVar #Random effect variance
saeHBBinomial$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBBinomial$plot[[3]]) is used to generate ACF Plot
#plot(saeHBBinomial$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBBinomial <- Binomial(formula,n.samp ="n.samp",data=dataBinomial)
## For data with nonsampled area use dataBinomialNs
# }
Run the code above in your browser using DataLab