# \donttest{
#Data Generation
set.seed(123)
m=30
x1=runif(m,0,1)
x2=runif(m,0,1)
b0=b1=b2=0.5
u=rnorm(m,0,1)
lambda= exp(b0 + b1*x1 + b2*x2+u)
mu=1/lambda
y=rexp(m,lambda)
vardir=1/lambda^2
hist(y)
dataExp=as.data.frame(cbind(y,x1,x2,vardir))
dataExpNs <- dataExp
dataExpNs$y[c(3,14,22,29,30)] <- NA
dataExpNs$vardir[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y ~ x1 +x2
## For data without any nonsampled area
formula = y ~ x1+x2
v = c(1,1,1)
c = c(0,0,0)
## Using parameter coef and var.coef
saeHBExponential <- Exponential(formula,coef=c,var.coef=v,iter.update=10,data=dataExp)
saeHBExponential$Est #Small Area mean Estimates
saeHBExponential$refVar #Random effect variance
saeHBExponential$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBExponential$plot[[3]]) is used to generate ACF Plot
#plot(saeHBExponential$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBExponential <- Exponential(formula,data=dataExp[1:10,])
## For data with nonsampled area use dataExpNs
# }
Run the code above in your browser using DataLab