# \donttest{
##Data Generation
set.seed(123)
m=30
x1=runif(m,0,1)
x2=runif(m,0,1)
b0=b1=b2=0.5
u=rnorm(m,0,1)
phi=rgamma(m,0.5,0.5)
vardir=1/phi
mu= exp(b0 + b1*x1+b2*x2+u)
A=mu^2*phi
B=mu*phi
y=rgamma(m,A,B)
dataGamma=as.data.frame(cbind(y,x1,x2,vardir))
dataGammaNs <- dataGamma
dataGammaNs$y[c(3,14,22,29,30)] <- NA
dataGammaNs$vardir[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y ~ x1 +x2
## For data without any nonsampled area
#formula = y ~ x1 +x2
v = c(1,1,1)
c = c(0,0,0)
## Using parameter coef and var.coef
saeHBGamma <- Gamma(formula,coef=c,var.coef=v,iter.update=10,data =dataGamma)
saeHBGamma$Est #Small Area mean Estimates
saeHBGamma$refVar #Random effect variance
saeHBGamma$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBGamma$plot[[3]]) is used to generate ACF Plot
#plot(saeHBGamma$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBGamma <- Gamma(formula, data = dataGamma)#'
## For data with nonsampled area use dataGammaNs
# }
Run the code above in your browser using DataLab