# \donttest{
##Data Generation
set.seed(123)
m=30
x1=runif(m,0,1)
x2=runif(m,1,2)
x3=runif(m,2,3)
b0=b1=b2=b3=0.5
u=rnorm(m,0,1)
Mu=b0 + b1*x1+b2*x2+b3*x3+u
sig=sqrt(1/rgamma(m,1,1))
y=rlogis(m,Mu,sig)
vardir=1/3*pi*sig^2
dataLogistic=as.data.frame(cbind(y,x1,x2,x3,vardir))
dataLogisticNs=dataLogistic
dataLogisticNs$y[c(3,14,22,29,30)] <- NA
dataLogisticNs$vardir[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y ~ x1 +x2 +x3
## For data without any nonsampled area
formula = y ~ x1 +x2 +x3
v = c(1,1,1,1)
c = c(0,0,0,0)
## Using parameter coef and var.coef
saeHBLogistic <- Logistic(formula,coef=c,var.coef=v,iter.update=10,data =dataLogistic)
saeHBLogistic$Est #Small Area mean Estimates
saeHBLogistic$refVar #Random effect variance
saeHBLogistic$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBLogistic$plot[[3]]) is used to generate ACF Plot
#plot(saeHBLogistic$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBLogistic <- Logistic(formula,data =dataLogistic)
## For data with nonsampled area use dataLogisticNs
# }
Run the code above in your browser using DataLab