# \donttest{
#Data Generation
set.seed(123)
m=30
x1=runif(m,0,1)
x2=runif(m,1,5)
x3=runif(m,10,15)
x4=runif(m,10,20)
b0=b1=b2=b3=b4=0.5
u=rnorm(m,0,1)
vardir=1/rgamma(m,1,1)
Mu <- b0+b1*x1+b2*x2+b3*x3+b4*x4+u
y=rnorm(m,Mu,sqrt(vardir))
dataNormal=as.data.frame(cbind(y,x1,x2,x3,x4,vardir))
dataNormalNs=dataNormal
dataNormalNs$y[c(3,10,15,29,30)] <- NA
dataNormalNs$vardir[c(3,10,15,29,30)] <- NA
##Compute Fitted Model
##y ~ x1 +x2 +x3 +x4
## For data without any nonsampled area
formula=y~x1+x2+x3+x4
var= "vardir"
v = c(1,1,1,1,1)
c= c(0,0,0,0,0)
## Using parameter coef and var.coef
saeHBnormal<-Normal(formula,vardir=var,coef=c,var.coef=v,data=dataNormal)
saeHBnormal$Est #Small Area mean Estimates
saeHBnormal$refVar #Random effect variance
saeHBnormal$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBnormal$plot[[3]]) is used to generate ACF Plot
#plot(saeHBnormal$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBnormal<-Normal(formula,vardir ="vardir",data=dataNormal)
## For data with nonsampled area use dataNormalNs
# }
Run the code above in your browser using DataLab