# \donttest{
##Data Generation
set.seed(123)
m=30
x1=runif(m,1,100)
x2=runif(m,10,15)
b0=b1=b2=0.5
u=rnorm(m,0,1)
MU=b0+b1*x1+b2*x2+u
k=rgamma(1,10,1)
y=rt(m,k,MU)
vardir=k/(k-1)
vardir=sd(y)^2
datatnc=as.data.frame(cbind(y,x1,x2,vardir))
datatncNs=datatnc
datatncNs$y[c(3,14,22,29,30)] <- NA
datatncNs$vardir[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y ~ x1 +x2
## For data without any nonsampled area
#formula = y ~ x1+x2
v = c(1,1,1)
c = c(0,0,0)
dat = datatnc
## Using parameter coef and var.coef
saeHBtnc <- Student_tnc(formula,coef=c, var.coef=v,iter.update=10, data = dat)
saeHBtnc$Est #Small Area mean Estimates
saeHBtnc$refVar #Random effect variance
saeHBtnc$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBtnc$plot[[3]]) is used to generate ACF Plot
#plot(saeHBtnc$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBtnc <- Student_tnc(formula,data = datatnc)
## For data with nonsampled area use datatncNs
# }
Run the code above in your browser using DataLab