# \donttest{
##Data Generation
set.seed(123)
m=30
x=runif(m,0,1)
b0=b1=0.5
u=rnorm(m,0,1)
Mu=exp(b0+b1*x+u)
k=rgamma(m,2,1)
lambda=Mu/gamma(1+1/k)
y=rweibull(m,k,lambda)
MU=lambda*gamma(1+1/k)
vardir=lambda^2*(gamma(1+2/k)-(gamma(1+1/k))^2)
dataWeibull=as.data.frame(cbind(y,x,vardir))
dataWeibullNs=dataWeibull
dataWeibullNs$y[c(3,14,22,29,30)] <- NA
dataWeibullNs$vardir[c(3,14,22,29,30)] <- NA
##Compute Fitted Model
##y ~ x
## For data without any nonsampled area
formula = y ~ x
var.coef = c(1,1)
coef = c(0,0)
## Using parameter coef and var.coef
saeHBWeibull <- Weibull(formula,coef=coef,var.coef=var.coef,iter.update=10,data=dataWeibull)
saeHBWeibull$Est #Small Area mean Estimates
saeHBWeibull$refVar #Random effect variance
saeHBWeibull$coefficient #coefficient
#Load Library 'coda' to execute the plot
#autocorr.plot(saeHBWeibull$plot[[3]]) is used to generate ACF Plot
#plot(saeHBWeibull$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBWeibull <- Weibull(formula, data=dataWeibull)
## For data with nonsampled area use dataWeibullNs
# }
Run the code above in your browser using DataLab