# \donttest{
# Data Generation
set.seed(123)
m <- 30
x1 <- runif(m, 0, 1)
x2 <- runif(m, 0, 1)
b0 <- b1 <- b2 <- 0.5
u <- rnorm(m, 0, 1)
lambda <- exp(b0 + b1 * x1 + b2 * x2 + u)
mu <- 1 / lambda
y <- rexp(m, lambda)
vardir <- 1 / lambda^2
hist(y)
dataExp <- as.data.frame(cbind(y, x1, x2, vardir))
dataExpNs <- dataExp
dataExpNs$y[c(3, 14, 22, 29, 30)] <- NA
dataExpNs$vardir[c(3, 14, 22, 29, 30)] <- NA
## Compute Fitted Model
## y ~ x1 +x2
## For data without any nonsampled area
formula <- y ~ x1 + x2
v <- c(1, 1, 1)
c <- c(0, 0, 0)
## Using parameter coef and var.coef
saeHBExponential <- Exponential(formula, coef = c, var.coef = v, iter.update = 10, data = dataExp)
saeHBExponential$Est # Small Area mean Estimates
saeHBExponential$refVar # Random effect variance
saeHBExponential$coefficient # coefficient
# Load Library 'coda' to execute the plot
# autocorr.plot(saeHBExponential$plot[[3]]) is used to generate ACF Plot
# plot(saeHBExponential$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBExponential <- Exponential(formula, data = dataExp[1:10, ])
## For data with nonsampled area use dataExpNs
# }
Run the code above in your browser using DataLab