# \donttest{
## Data Generation
set.seed(123)
library(MASS)
m <- 30
x <- runif(m, 0, 1)
b0 <- b1 <- 0.5
u <- rnorm(m, 0, 1)
Mu <- exp(b0 + b1 * x + u)
theta <- 1
y <- MASS::rnegbin(m, Mu, theta)
vardir <- Mu + Mu^2 / theta
dataNegativeBinomial <- as.data.frame(cbind(y, x, vardir))
dataNegativeBinomialNs <- dataNegativeBinomial
dataNegativeBinomialNs$y[c(3, 14, 22, 29, 30)] <- NA
dataNegativeBinomialNs$vardir[c(3, 14, 22, 29, 30)] <- NA
## Compute Fitted Model
## y ~ x
## For data without any nonsampled area
formula <- y ~ x
v <- c(1, 1)
c <- c(0, 0)
dat <- dataNegativeBinomial
## Using parameter coef and var.coef
saeHBNegbin <- NegativeBinomial(formula, coef = c, var.coef = v, iter.update = 10, data = dat)
saeHBNegbin$Est # Small Area mean Estimates
saeHBNegbin$refVar # Random effect variance
saeHBNegbin$coefficient # coefficient
# Load Library 'coda' to execute the plot
# autocorr.plot(saeHBNegbin$plot[[3]]) is used to generate ACF Plot
# plot(saeHBNegbin$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBNegbin <- NegativeBinomial(formula, data = dat)
## For data with nonsampled area use dataNegativeBinomialNs
# }
Run the code above in your browser using DataLab