# \donttest{
## Data Generation
set.seed(123)
m <- 30
x1 <- runif(m, 10, 20)
x2 <- runif(m, 30, 50)
b0 <- b1 <- b2 <- 0.5
u <- rnorm(m, 0, 1)
MU <- b0 + b1 * x1 + b2 * x2 + u
k <- rgamma(1, 10, 1)
y <- rt(m, k, MU)
vardir <- k / (k - 1)
vardir <- sd(y)^2
datat <- as.data.frame(cbind(y, x1, x2, vardir))
datatNs <- datat
datatNs$y[c(3, 14, 22, 29, 30)] <- NA
datatNs$vardir[c(3, 14, 22, 29, 30)] <- NA
## Compute Fitted Model
## y ~ x1 +x2
## For data without any nonsampled area
formula <- y ~ x1 + x2
var.coef <- c(1, 1, 1)
coef <- c(0, 0, 0)
## Using parameter coef and var.coef
saeHBt <- Student_t(formula, coef = coef, var.coef = var.coef, iter.update = 10, data = datat)
saeHBt$Est # Small Area mean Estimates
saeHBt$refVar # Random effect variance
saeHBt$coefficient # coefficient
# Load Library 'coda' to execute the plot
# autocorr.plot(saeHBt$plot[[3]]) is used to generate ACF Plot
# plot(saeHBt$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBt <- Student_t(formula, data = datat)
## For data with nonsampled area use datatNs
# }
Run the code above in your browser using DataLab