# \donttest{
## Data Generation
set.seed(123)
m <- 30
x1 <- runif(m, 1, 100)
x2 <- runif(m, 10, 15)
b0 <- b1 <- b2 <- 0.5
u <- rnorm(m, 0, 1)
MU <- b0 + b1 * x1 + b2 * x2 + u
k <- rgamma(1, 10, 1)
y <- rt(m, k, MU)
vardir <- k / (k - 1)
vardir <- sd(y)^2
datatnc <- as.data.frame(cbind(y, x1, x2, vardir))
datatncNs <- datatnc
datatncNs$y[c(3, 14, 22, 29, 30)] <- NA
datatncNs$vardir[c(3, 14, 22, 29, 30)] <- NA
## Compute Fitted Model
## y ~ x1 +x2
## For data without any nonsampled area
formula <- y ~ x1+x2
v <- c(1, 1, 1)
c <- c(0, 0, 0)
dat <- datatnc
## Using parameter coef and var.coef
saeHBtnc <- Student_tnc(formula, coef = c, var.coef = v, iter.update = 10, data = dat)
saeHBtnc$Est # Small Area mean Estimates
saeHBtnc$refVar # Random effect variance
saeHBtnc$coefficient # coefficient
# Load Library 'coda' to execute the plot
# autocorr.plot(saeHBtnc$plot[[3]]) is used to generate ACF Plot
# plot(saeHBtnc$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBtnc <- Student_tnc(formula, data = datatnc)
## For data with nonsampled area use datatncNs
# }
Run the code above in your browser using DataLab