mse: Compute the Mean Squared Error of an Estimator
Description
A generic function to compute the mean squared error of the predicted values
under the estimated model. See also rfh for examples.
Usage
mse(object, ...)
# S3 method for fitrfh
mse(object, type = "pseudo", predType = "reblupbc", B = 100, ...)
Arguments
object
(see methods) an object containing the estimation result, e.g.
rfh
...
arguments passed to methods
type
(character) the type of the MSE. Available are 'pseudo' and
'boot'
predType
(character) the type of prediction: c("reblup",
"reblupbc")
B
(numeric) number of bootstrap repetitions
Details
Type pseudo is an approximation of the MSE based on a pseudo
linearisation approach by Chambers, et. al. (2011). The specifics can be
found in Warnholz (2016). Type boot implements a parameteric bootstrap for
these methods.
References
Chambers, R., H. Chandra and N. Tzavidis (2011). "On bias-robust mean squared
error estimation for pseudo-linear small area estimators". In: Survey
Methodology 37 (2), pp. 153–170.
Warnholz, S. (2016): "Small Area Estimaiton Using Robust Extension to Area
Level Models". Not published (yet).