Learn R Programming

saekernel (version 0.1.1)

mse_saekernel: Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel and Bootstrap Mean Squared Error Estimators

Description

This Function Gives Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel and Calculates The Bootstrap Mean Squared Error Estimates

Usage

mse_saekernel(X, Y, vardir, bandwidth, B = 1000)

Arguments

X

Auxiliary Variable of X

Y

Direct Estimation of Y

vardir

Sampling Variances of Direct Estimators

bandwidth

The kernel Bandwidth Smoothing Parameter

B

Number of Bootstrap. Default is 1000

Value

This function returns a list with following objects:

est

a value of Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel

refvar

Estimated Random Effect Variance

mse

Bootstrap Mean Squared Error Estimators of Small Area Estimation Non-Parametric Based Nadaraya-Watson Kernel

Examples

Run this code
# NOT RUN {
##load dataset
data(Data_saekernel)

mse_saekernel(X = Data_saekernel$x, Y = Data_saekernel$y,
vardir = Data_saekernel$Vardir, bandwidth = 0.04, B = 1000)

# }

Run the code above in your browser using DataLab