data(cow.saemix)
saemix.data<-saemixData(name.data=cow.saemix,header=TRUE,name.group=c("cow"),
name.predictors=c("time"),name.response=c("weight"),
name.covariates=c("birthyear","twin","birthrank"),
units=list(x="days",y="kg",covariates=c("yr","-","-")))
unique(saemix.data@data$birthrank) # 5 categories, 3 4 5 6 7
# create 3 dummy variables regrouping 3 (reference), 4 and 5, and 6 and 7
cowt <- transformCatCov(saemix.data, covariate=birthrank, newCat=c(1,2,2,3,3), verbose=TRUE)
head(saemix.data@data) # the original covariate is birthrank
head(cowt@data)
# the new covariates are birthrank.ref (initially 3), birthrank.G2 (regrouping 4 and 5) and
# birthrank.G3 (6 and 7)
# only birthrank.G2 and birthrank.G3 are included in the name.covariates slot of the object cowt
cowt <- transformCatCov(cowt, covariate=birthrank, newCat=c(1,2,2,3,3),
newCatName=c("ref","preg4-5","6-7"), verbose=TRUE)
head(cowt@data)
# new names can be assigned to the dichotomised covariates through the newCatName argument
# the new covariates are now "ref", preg4-5" (regrouping 4 and 5) and "6-7" (6 and 7)
# Changing the reference for a binary variable
cowt<-transformCatCov(cowt, covariate=twin, newCat=c(2,1), newCatName="Singleton", verbose=TRUE)
Run the code above in your browser using DataLab