Learn R Programming

sampleSelection (version 1.0-4)

heckit2fit: 2-step Heckman (heckit) estimation

Description

These functions do the actual fitting of tobit-2 (sample selection) and tobit-5 (switching regression) models by the 2-step Heckman (heckit) estimation. They are called by selection or heckit and they are intended for sampleSelection internal use.

Usage

heckit2fit( selection, outcome, data=sys.frame(sys.parent()), weights = NULL, inst = NULL, print.level = 0, maxMethod = "Newton-Raphson" )
heckit5fit( selection, outcome1, outcome2, data = sys.frame(sys.parent()), ys = FALSE, yo = FALSE, xs = FALSE, xo = FALSE, mfs = FALSE, mfo = FALSE, print.level = 0, maxMethod = "Newton-Raphson", ... )
heckitTfit(selection, outcome, data=sys.frame(sys.parent()), ys=FALSE, yo=FALSE, xs=FALSE, xo=FALSE, mfs=FALSE, mfo=FALSE, print.level=0, maxMethod="Newton-Raphson", ... )

Arguments

selection
formula for the probit estimation (1st step) (see selection).
outcome
formula to be estimated (2nd step).
outcome1
formula, the first outcome equation.
outcome2
formula, the second outcome equation.
data
a data frame containing the data.
weights
an optional vector of ‘prior weights’ to be used in the fitting process. Should be NULL or a numeric vector. Weights are currently only supported in type-2 models.
inst
an optional one-sided formula specifying instrumental variables for a 2SLS/IV estimation on the 2nd step.
ys, yo, xs, xo, mfs, mfo
logicals. If true, the response (y), model matrix (x) or the model frame (mf) of the selection (s) or outcome (o) equation(s) are returned.
print.level
numeric, values greater than 0 will produce increasingly more debugging information.
maxMethod
character string, a maximisation method supported by maxLik that is used for estimating the probit model (1st stage).
...
currently not used.

Value

see selection.

References

see selection.

See Also

selection, heckit