prev <- 0.01
logOR <- 0.3
# No confounders, Prob(X=1)=0.2
power_ordinal(prev, logOR, probX=c(0.8, 0.2))
# Generate data for a N(0,1) confounder and ordinal exposure with 3 levels
data <- cbind(rnorm(1000), rbinom(1000, 2, 0.5))
beta <- c(0.1, 0.2)
power_ordinal(prev, beta, data=data)
# Define a function to generate random vectors for two confounders and an ordinal
# exposure with 5 levels
f <- function(n) {cbind(rnorm(n), rbinom(n, 1, 0.5), rbinom(n, 4, 0.5))}
beta <- c(0.2, 0.3, 0.25)
power_ordinal(prev, beta, distF=f)
Run the code above in your browser using DataLab