Learn R Programming

sampling (version 0.1)

balancedstratification: Balanced stratification

Description

Select a stratified balanced sample (a vector of 0 and 1). Firstly, the flight phase is applied in each stratum. Secondly, the strata are aggregated and the flight phase is applied on the whole population. Finally, the landing phase is applied on the whole population.

Usage

balancedstratification(X,strat,pik,comment=TRUE,method=1)

Arguments

X
matrix of auxiliary variables on which the sample must be balanced.
strat
vector of integers that specifies the stratification.
pik
vector of inclusion probabilities.
comment
a comment is written during the execution if comment is equal to TRUE.
method
the used method in the procedure samplecube.

encoding

latin1

References

Chauvet, G. and Till�, Y. (2004). A fast algorithm of balanced sampling. Submitted for publication. Chauvet, G. and Till�, Y. (2005). New SAS macros for balanced sampling. In INSEE, editor, Journ�es de M�thodologie Statistique, Paris. Deville, J.-C. and Till�, Y. (2004). Efficient balanced sampling: the cube method. Biometrika, 91, 893-912. Deville, J.-C. and Till�, Y. (2005). Variance approximation under balanced sampling. Journal of Statistical Planning and Inference, 128/2:411--425.

See Also

samplecube, fastflightcube, landingcube

Examples

Run this code
############
## Example 1
############
# variable of stratification (3 strata)
strat=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)
# matrix of balancing variables
X=cbind(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
# Vector of inclusion probabilities.
# The sample has a size equal to 9.
pik=rep(3/5,times=15)
# Selection of the stratified sample
s=balancedstratification(X,strat,pik,comment=TRUE)
# The sample
s
############
## Example 2
############
data(MU284)
X=cbind(MU284$P75,MU284$CS82,MU284$SS82,MU284$S82,MU284$ME84)
strat=MU284$REG
pik=inclusionprobabilities(MU284$P75,80)
s=balancedstratification(X,strat,pik,TRUE)
############
## Example 3
############
data(swissmunicipalities)
swiss=swissmunicipalities
X=cbind(swiss$HApoly,
        swiss$Surfacesbois,
        swiss$P00BMTOT,
        swiss$P00BWTOT,
        swiss$POPTOT,
        swiss$Pop020,
        swiss$Pop2040,
        swiss$Pop4065,
        swiss$Pop65P,
        swiss$H00PTOT )
pik=inclusionprobabilities(swiss$POPTOT,400)
sample=balancedstratification(X,swiss$REG,pik,comment=TRUE)
as.character(swiss$Nom[sample==1])

Run the code above in your browser using DataLab