Learn R Programming

sampling (version 2.11)

Survey Sampling

Description

Functions to draw random samples using different sampling schemes are available. Functions are also provided to obtain (generalized) calibration weights, different estimators, as well some variance estimators.

Copy Link

Version

Install

install.packages('sampling')

Monthly Downloads

6,714

Version

2.11

License

GPL (>= 2)

Maintainer

Alina Matei

Last Published

July 10th, 2025

Functions in sampling (2.11)

UPrandompivotal

Random pivotal sampling
checkcalibration

Check calibration
balancedtwostage

Balanced two-stage sampling
UPrandomsystematic

Random systematic sampling
calib

g-weights of the calibration estimator
UPsystematic

Systematic sampling
calibev

Calibration estimator and its variance estimation
balancedstratification

Balanced stratification
balancedcluster

Balanced cluster
UPsystematicpi2

Joint inclusion probabilities for systematic sampling
cleanstrata

Clean strata
belgianmunicipalities

The Belgian municipalities population
UPtillepi2

Joint inclusion probabilties for Tille sampling
gencalib

g-weights of the generalized calibration estimator
disjunctive

Disjunctive combination
landingcube

Landing phase for the cube method
inclusionprobastrata

Inclusion probabilities for a stratified design
postest

Poststratified estimator
fastflightcube

Fast flight phase for the cube method
UPtille

Tille sampling
mstage

Multistage sampling
cluster

Cluster sampling
getdata

Get data
inclusionprobabilities

Inclusion probabilities
rmodel

Response probability using logistic regression
rhg_strata

Response homogeneity groups for a stratified sampling
regest

Regression estimator
rhg

Response homogeneity groups
srswor1

Selection-rejection method
varest

Variance estimation using the Deville's method
regest_strata

Regression estimator for a stratified design
ratioest_strata

Ratio estimator for a stratified design
ratioest

Ratio estimator
vartaylor_ratio

Taylor-series linearization variance estimation of a ratio
strata

Stratified sampling
swissmunicipalities

The Swiss municipalities population
rec99

The 1999 census data
sampling-internal

Internal sampling Functions
samplecube

Sample cube method
varHT

Variance estimators of the Horvitz-Thompson estimator
poststrata

Postratification
writesample

All possible samples of fixed size
srswor

Simple random sampling without replacement
srswr

Simple random sampling with replacement
UPmidzunopi2

Joint inclusion probabilities for Midzuno sampling
UPminimalsupport

Minimal support sampling
HTestimator

The Horvitz-Thompson estimator
Hajekestimator

The Hajek estimator
UPmaxentropy

Maximum entropy sampling
HTstrata

The Horvitz-Thompson estimator for a stratified design
UPbrewer

Brewer sampling
Hajekstrata

The Hajek estimator for a stratified design
MU284

The MU284 population
UPmidzuno

Midzuno sampling
UPmultinomial

Multinomial sampling
UPsampfordpi2

Joint inclusion probabilities for Sampford sampling
UPpoisson

Poisson sampling
UPsampford

Sampford sampling
UPopips

Order pips sampling
UPpivotal

Pivotal sampling