Learn R Programming

samplingDataCRT (version 1.0)

CovMat.Design: covariance matrix for the multivariate normal distributed variables

Description

covariance matrix of the normal distribution under cluster randomized study type given a design and a type

Usage

CovMat.Design(K, J, I, sigma.1.q, sigma.2.q = NULL, sigma.3.q)

Arguments

K
number of timepoints or measurments (design parameter)
J
number of subjects
I
number of clusters (design parameter)
sigma.1.q
variance of the lowest level (error variance or within subject variance)
sigma.2.q
secound level variance (e.g. within cluster and between subject variance), by default NULL and then a cross-sectional type
sigma.3.q
third level variance (e.g. between cluster variance)

Value

V covariance matrix

Examples

Run this code
K<-6  #measurement (or timepoints)
I<-10 #Cluster
J<-2 #number of subjects

sigma.1<-0.1
sigma.3<-0.9
CovMat.Design(K, J, I,sigma.1.q=sigma.1, sigma.3.q=sigma.3)

sigma.1<-0.1
sigma.2<-0.4
sigma.3<-0.9
CovMat.Design(K, J, I,sigma.1.q=sigma.1, sigma.2.q=sigma.2, sigma.3.q=sigma.3)

Run the code above in your browser using DataLab