Learn R Programming

sandwich (version 2.0-2)

Investment: US Investment Data

Description

US data for fitting an investment equation.

Usage

data(Investment)

Arguments

source

Table 15.1 in Greene (1993)

References

Greene W.H. (1993), Econometric Analysis, 2nd edition. Macmillan Publishing Company, New York.

Executive Office of the President (1984), Economic Report of the President. US Government Printing Office, Washington, DC.

Examples

Run this code
## Willam H. Greene, Econometric Analysis, 2nd Ed.
## Chapter 15
## load data set, p. 411, Table 15.1
data(Investment)

## fit linear model, p. 412, Table 15.2
fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment)
summary(fm)

## visualize residuals, p. 412, Figure 15.1
plot(ts(residuals(fm), start = 1964),
  type = "b", pch = 19, ylim = c(-35, 35), ylab = "Residuals")
sigma <- sqrt(sum(residuals(fm)^2)/fm$df.residual) ## maybe used df = 26 instead of 16 ??
abline(h = c(-2, 0, 2) * sigma, lty = 2)

if(require(lmtest)) {
## Newey-West covariances, Example 15.3
coeftest(fm, vcov = NeweyWest(fm, lag = 4))
## Note, that the following is equivalent:
coeftest(fm, vcov = kernHAC(fm, kernel = "Bartlett", bw = 5, prewhite = FALSE, adjust = FALSE))

## Durbin-Watson test, p. 424, Example 15.4
dwtest(fm)

## Breusch-Godfrey test, p. 427, Example 15.6
bgtest(fm, order = 4)
}

## visualize fitted series
plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment")
lines(ts(fitted(fm), start = 1964), col = 4)


## 3-d visualization of fitted model
if(require(scatterplot3d)) {
s3d <- scatterplot3d(Investment[,c(5,7,6)],
  type = "b", angle = 65, scale.y = 1, pch = 16)
s3d$plane3d(fm, lty.box = "solid", col = 4)
}

Run the code above in your browser using DataLab