require("PolynomF") # guaranteed to be available since package "sarima" imports it.
x <- sim_sarima(n=144, model = list(ma=0.8)) # MA(1)
x <- sim_sarima(n=144, model = list(ar=0.8)) # AR(1)
x <- sim_sarima(n=144, model = list(ar=c(rep(0,11),0.8))) # SAR(1), 12 seasons
x <- sim_sarima(n=144, model = list(ma=c(rep(0,11),0.8))) # SMA(1)
# more enlightened SAR(1) and SMA(1)
x <- sim_sarima(n=144,model=list(sar=0.8, nseasons=12, sigma2 = 1)) # SAR(1), 12 seasons
x <- sim_sarima(n=144,model=list(sma=0.8, nseasons=12, sigma2 = 1)) # SMA(1)
x <- sim_sarima(n=144, model = list(iorder=1, sigma2 = 1)) # (1-B)X_t = e_t (random walk)
acf(x)
acf(diff(x))
x <- sim_sarima(n=144, model = list(iorder=2, sigma2 = 1)) # (1-B)^2 X_t = e_t
x <- sim_sarima(n=144, model = list(siorder=1,
nseasons=12, sigma2 = 1)) # (1-B)^{12} X_t = e_t
x <- sim_sarima(n=144, model = list(iorder=1, siorder=1,
nseasons=12, sigma2 = 1))
x <- sim_sarima(n=144, model = list(ma=0.4, iorder=1, siorder=1,
nseasons=12, sigma2 = 1))
x <- sim_sarima(n=144, model = list(ma=0.4, sma=0.7, iorder=1, siorder=1,
nseasons=12, sigma2 = 1))
x <- sim_sarima(n=144, model = list(ar=c(1.2,-0.8), ma=0.4,
sar=0.3, sma=0.7, iorder=1, siorder=1,
nseasons=12, sigma2 = 1))
x <- sim_sarima(n=144, model = list(iorder=1, siorder=1,
nseasons=12, sigma2 = 1),
x = list(init=AirPassengers[1:13]))
p <- polynom(c(1,-1.2,0.8))
solve(p)
abs(solve(p))
sim_sarima(n=144, model = list(ar=c(1.2,-0.8), ma=0.4, sar=0.3, sma=0.7,
iorder=1, siorder=1, nseasons=12))
x <- sim_sarima(n=144, model=list(ma=0.4, iorder=1, siorder=1, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sma=0.4, iorder=1, siorder=1, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sma=0.4, iorder=0, siorder=0, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sar=0.4, iorder=0, siorder=0, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sar=-0.4, iorder=0, siorder=0, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(ar=c(1.2, -0.8), ma=0.4, sar=0.3, sma=0.7,
iorder=1, siorder=1, nseasons=12))
## use xintercept to include arbitrary trend/covariates
sim_sarima(n = 144, model = list(sma = 0.4, ma = 0.4, sar = 0.8, ar = 0.5,
nseasons = 12, sigma2 = 1), xintercept = 1:144)
Run the code above in your browser using DataLab