### =======================================
### SIMPLE BINARY SBM (Bernoulli model)
## Graph parameters & Sampling
nbNodes <- 60
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(.4, 3) + 0.05 # connectivity matrix: affiliation network
connectParam <- list(mean = means)
mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam)
adjacencyMatrix <- mySampler$networkData
## Estimation
mySimpleSBM <-
estimateSimpleSBM(adjacencyMatrix, 'bernoulli', estimOptions = list(plot = FALSE))
plot(mySimpleSBM, 'data', ordered = FALSE)
plot(mySimpleSBM, 'data')
plot(mySimpleSBM, 'expected', ordered = FALSE)
plot(mySimpleSBM, 'expected')
plot(mySimpleSBM, 'meso')
### =======================================
### SIMPLE POISSON SBM
## Graph parameters & Sampling
nbNodes <- 60
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(15., 3) + 5 # connectivity matrix: affiliation network
connectParam <- list(mean = means)
mySampler <- sampleSimpleSBM(nbNodes, blockProp, list(mean = means), model = "poisson")
adjacencyMatrix <- mySampler$networkData
## Estimation
mySimpleSBM <- estimateSimpleSBM(adjacencyMatrix, 'poisson',
estimOptions = list(plot = FALSE))
plot(mySimpleSBM, 'data', ordered = FALSE)
plot(mySimpleSBM, 'data')
plot(mySimpleSBM, 'expected', ordered = FALSE)
plot(mySimpleSBM, 'expected')
### =======================================
### SIMPLE GAUSSIAN SBM
## Graph parameters & Sampling
nbNodes <- 60
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(15., 3) + 5 # connectivity matrix: affiliation network
connectParam <- list(mean = means, var = 2)
mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam, model = "gaussian")
## Estimation
mySimpleSBM <-
estimateSimpleSBM(mySampler$networkData, 'gaussian', estimOptions = list(plot = FALSE))
plot(mySimpleSBM, 'data', ordered = FALSE)
plot(mySimpleSBM, 'data')
plot(mySimpleSBM, 'expected', ordered = FALSE)
plot(mySimpleSBM, 'expected')
Run the code above in your browser using DataLab