PCA for the parameters. These plots rely on factoextra fviz functions.
parameter_pca_analysis(model, filename, plots_dir, best_fits_percent = 50,
label.ind = "all", select.ind = NULL, repel.ind = TRUE,
label.var = "all", select.var = NULL, repel.var = TRUE)
the model name
the filename containing the fits sequence
the directory to save the generated plots
the percent of best fits to analyse.
parameter `label` passed to factoextra::fviz_pca_ind(). Labels shown if <= 75 and select.ind is NULL.
parameter `select.ind` passed to factoextra::fviz_pca_ind().
parameter `repel` passed to factoextra::fviz_pca_ind()
parameter `label` passed to factoextra::fviz_pca_var().
parameter `select.var` passed to factoextra::fviz_pca_var().
parameter `repel` passed to factoextra::fviz_pca_var() dir.create(file.path("pe_datasets")) dir.create(file.path("pe_plots")) data(insulin_receptor_best_fits) write.table(insulin_receptor_best_fits, file=file.path("pe_datasets", "best_fits.csv"), row.names=FALSE) # generate the global statistics for the parameter estimation pe_ds_preproc(filename=file.path("pe_datasets", "best_fits.csv"), param.names=c('k1', 'k2', 'k3'), logspace=TRUE, all.fits=FALSE) parameter_pca_analysis(model="ir_beta", filename=file.path("pe_datasets", "best_fits_log10.csv"), plots_dir="pe_plots", best_fits_percent=50)