# NOT RUN {
dir.create(file.path("pe_datasets"))
dir.create(file.path("pe_plots"))
data(insulin_receptor_all_fits)
write.table(insulin_receptor_all_fits,
file=file.path("pe_datasets", "all_fits.csv"),
row.names=FALSE)
# generate the global statistics for the parameter estimation
pe_ds_preproc(filename=file.path("pe_datasets", "all_fits.csv"),
param.names=c('k1', 'k2', 'k3'),
logspace=TRUE,
all.fits=TRUE,
data_point_num=33,
fileout_param_estim_summary=file.path("pe_datasets", "param_estim_summary.csv"))
# load the fits for this parameter
df <- as.data.frame(data.table::fread(file.path("pe_datasets", "all_fits_log10.csv"),
select=c("ObjVal", "k2")))
# load the global statistics for the parameter estimation
dt.stats <- data.table::fread(file.path("pe_datasets", "param_estim_summary.csv"),
select=c("MinObjVal", "CL66ObjVal", "CL95ObjVal", "CL99ObjVal"))
df99 <- df[df[ ,"ObjVal"] <= dt.stats$CL99ObjVal, ]
# compute the stats for parameter k2.
plot_sampled_ple(df99=df99,
cl66_objval=dt.stats$CL66ObjVal,
cl95_objval=dt.stats$CL95ObjVal,
cl99_objval=dt.stats$CL99ObjVal,
plots_dir="pe_plots",
model="ir_beta",
logspace=TRUE)
# }
Run the code above in your browser using DataLab